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7 Radiation 

In this chapter, the theoretical basis of Meteonorm is presented. To keep the length of the text within 
reasonable limits, some of the material (i.e. longer explanations) has been omitted. References are 
made to the contribution in Solar Energy concerning interpolation and generation of radiation data 
(Remund et al., 1998) and the technical publication on data interpolation presented at the 14th Solar 
Energy PV Conference in Barcelona (Remund and Kunz, 1997). 

7.1 Reference time in Meteonorm  
Hourly values are designated by the end time of the interval. Thus the value for 14.00 hours refers to 
the average value of the interval from 13.00 to 14.00 hours. The central value of this interval is 13.30 
hours. The computer program contains an internal time reference in minutes, which defines the 
position of the center of the interval in relation to the end time. In the example given here it is -30 
minutes. 

The reference time can be changed in the program. Alterations are, however, only necessary in two 
cases: 

1. When hourly values whose central value does not correspond to the half-hour are imported. 
2. When hourly values whose central value does not correspond to the half-hour are to be generated. 

Example of 1: Measured values are assumed to be available. The measurement interval extended 
from one half-hour to the next (e.g. 00:30 to 01:30). The hourly average was calculated 
based on this interval and stored at the end time (e.g. 01:30). As, however, Meteonorm 
only allows integer hourly values (h) from 1 to 24,  it is only possible to use the full hour 
(e.g. 1) as end time for the interval. The computer program must be in a position to 
determine by how much the given end time (e.g. 1) differs from the effective center 
value (e.g. 01:00). As the measurement interval (e.g. 01:00) corresponds in this 
example to the given end time (e.g. 1), the reference time required by Meteonorm 
(IZRM = difference between the effective center of the interval and the given end time 
in minutes) is 0. 

Example of 2: Hourly values are to be generated using the reference time for measured data of the 
Swiss Meteorological Office (SMA). The measurement interval of the SMA extends from 
10 minutes before the full hour to 20 minutes before the next full hour (e.g. 00:50 to 
01:40), e.g. the 10-minute values are averaged and stored at the end time (e.g. 01:40). 
The center of the interval is 10 minutes after the full hour (e.g. 01:10). The end time 
output in the Meteonorm computer program corresponds to the full hour (e.g. 1). The 
effective center of the interval (e.g. 01:10) differs in this case by 10 minutes from the 
given end time (e.g. 1). Meteonorm thus requires 10 as reference time. 
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7.2 Worldwide interpolation of 
meteorological data 

For the simulation of solar energy systems, meteorological data from all parts of the world is needed. 
For many regions, measured data may only be applied within a radius of 50 km from weather stations. 
This makes it necessary to interpolate parameters between stations. The method given below enables 
the data to be interpolated and monthly values to be obtained for almost all points of the globe.  

7.2.1 Methods 

To calculate meteorological data for any desired location in the world, an interpolation procedure must 
be applied. For global radiation, this is done with a 3-D inverse distance model (Shepardôs gravity 
interpolation), based on the introduction by Zelenka et al. (1992) (IEA Task 9), with additional North-
South distance penalty (Wald and Lefèvre, 2001), where: 
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 (7.2.1) 

wi :  weight i wk :  sum of overall weights  
R : search radius (max. 2000 km) v : vertical scale factor  
s :  horizontal (geodetic) distance [m] zx, zi :  altitudes of the sites [m]  

i: Number of sites (maximum 6) Fi , Fx: latitudes of the points 
gv: vertical gradient 

The vertical scale factor v and the vertical gradient gv are depending on the parameter (Tab. 7.2.1).  

Tab. 7.2.1: Monthly vertical scale factors v and gradients gv for interpolation 

Parameter v gv 

Gh 150 0.0 

Ta 400 0.001 

Td 400 0.002 

FF 300 0.0 

RR 200 0.0 

Rd 300 0.0 

Sd 400 0.002 
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The other parameters (temperature, wind, humidity and rain) can be interpolated using similar 
procedures. The vertical factor v in Eqn. 7.2.1 is adjusted to get the smallest deviations. For 
interpolating temperature and wind data, further information on local effects is needed. The influence 
of the sea shore is considered in the following way: increased wind speed (1 m/s) for all months, 
increased temperature in winter, and lower temperature in summer (not applied to tropical regions) 
(Tab 7.2.2). 

Tab. 7.2.2: Monthly correction factors for temperature for local features in °C (slightly modified sia 
model) 

Feature  Zone Jan Feb Mar April May June July Aug Sep Oct Nov Dec 

open A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

depression A -1.6 -0.7 -0.5 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 -0.4 -0.7 -1.2 

cold hollow A -3.9 -2.8 -1.7 -0.4 -0.4 -0.3 -0.3 -0.2 -0.2 -1.0 -2.2 -3.8 

sea/lake A 1.2 0.8 0.0 -0.5 -0.7 -0.7 -0.4 -0.1 0.4 0.6 0.7 1.1 

city A 1.1 1.0 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 1.1 1.2 

S-facing incline N 1.8 1.2 1.0 0.8 0.8 0.6 0.8 0.8 1.1 1.4 1.7 1.7 

S-facing incline S 3.4 2.9 1.9 1.3 1.3 1.3 1.5 1.7 1.8 2.1 2.8 3.7 

W/E-facing incline N 0.9 1.8 0.6 0.5 0.4 0.4 0.3 0.4 0.4 0.6 0.7 0.9 

W/E-facing incline S 1.7 1.5 1.0 0.7 0.7 0.7 0.8 0.9 0.9 1.1 1.4 1.9 

valley N 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 

valley S 1.8 1.6 1.1 1.0 1.0 0.7 0.9 1.0 1.0 1.2 1.6 2.1 

*S-facing incline. For southern hemisphere: N-facing incline! 

Zone: N: Regions north of 45°N or south of 45°S A: General S: Regions south of 45°N and 
north of 45°S  

Feature: Depression: Small and medium depressions with formation of cold hollows, particularly in winter, or 
strongly shaded. Mainly confined to mountainous regions.  
Cold hollow: Includes the extensive cold hollows of central Alpine valleys such as in upper Engadine 
in Switzerland.  
Lake: Vicinity of sea or larger lakes (> 100 km2). Site not more than 1 km from the shore.  
City: Applicable to centers of larger cities with over 100,000 inhabitants.  
(See also Fig. 2.2.1 and Tab. 2.2.1) 

Tab. 7.2.3: Monthly correction factors for wind speed in m/s depending on terrain. Simplified WASP 
model (Risoe National Laboratory, 1990). 

Terrain  Correction factor [m/s] 
(applicable to all 
months of year) 

sheltered terrain (cities) -1.0 

open 0.0 

sea/lake 1.0 

Summits (hills and ridges) 3.0 
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7.2.2 Satellite data 

The ground data is supplemented with satellite data to increase the quality, especially in regions with 
poor ground station data coverage. 

In version 8.0 satellite data is used for radiation interpolation in all areas (Fig. 3.1.1). The method used 
for processing the satellite images is an approximation of methods like Heliosat II (Lefèvre et al., 
2002): The hourly pictures of the visible channel of the 5 geostationary satellites have been used 
(period 2008ï2020 for MSG, 2019-2020 for Himawari and 2018-19 for GOES-E and Indoex). The 
satellite pictures are processed to daily means of global radiation and summed up to monthly values. 

Correction (merging of ground and satellite data) in four steps: 

1. Adaptation (satellite to ground) with linear regression (if the regression is significant and the 
offset is small) per geostationary satellite 

2. Regional adaptation interpolation at 4 x 4° grid per satellite 
3. Correction of average radiation levels per geostationary satellites based on overlapping 

regions (truth: MSG area) 
4. Fusion of satellites with smoothing the overlapping parts (10°) 

The maps based on the four steps stored in the Meteonorm software.  

Local adaptation to ground measurements for the points of interpolation is additionally done within the 
software (on the fly) to avoid steps with growing distances to the ground sites. This step is described 
in the next chapter. 

 

7.2.3 Merging of ground and satellite data 

Where no radiation measurement is available nearer than 200 km (Europe: 50 km) from the selected 
location, satellite information is used. If the nearest site is more than 30 km (Europe: 10 km) away, a 
mixture of ground and satellite information is used. 

These monthly values are interpolated with mean ground measurements (mainly GEBA data). The 
difference between the ground measurements and satellite information is interpolated spatially with 
the inverse distance method (see Chapter 7.2.1). This provides a result which includes the values at 
the ground stations and the variation of the satellite pictures. 

7.2.4 Quality of the interpolation on yearly means 

Following interpolation, the accuracy of the results was found by cross correlation method to be as 
follows: Interpolation of global radiation: mean biased error (mbe): 0 W/m2 (0 %); root mean square 
error (rmse): 12 W/m2 (6.8%) (Tab. 7.2.4). For temperature interpolation, the mbe was 0.0 °C and the 
rmse 1.3 °C. Using the nearest neighbor interpolation method as a benchmark, the rmse for global 
radiation would be 14% and that for temperature 3.4 °C. 

Tab. 7.2.4: Quality of the ground bases interpolation of yearly values. 
 

 Gh  Ta Td FF RR Rd Sd 

 [%] [°C] [°C] [m/s] [%] [d] [%] 

Time period All 2000
-19 

2000
-19 

2000
-19 

2001
-19 

2001
-19 

1961
-90 

Europe 5.9 1.0 0.7 1.2 22 16 9.6 

Western Europe 5.5 1.0 0.7 1.1 22 15 10.5 

Switzerland 6.7 0.9 0.5 1.1 18 17 10.3 

Germany 4.1 1.0 0.5 0.8 19 9 6.6 

France 3.8 0.7 0.5 1.2 22 17 7.4 

Asia 7.5 1.5 1.4 0.9 25 19 7.6 

Japan 5.6 1.0 0.5 0.9 16 17 7.6 

Africa 7.4 1.8 1.7 1.0 39 31 7.8 



Theory  Meteonorm 5 

North America 4.6 1.0 1.0 0.8 25 21 8.4 

South America  10.3 1.7 1.1 1.0 36 37 16.0 

Australia/Ocean. 5.9 1.2 1.3 1.4 37 25 16.0 

World 6.8 1.3 1.1 1.0 26 23 9.1 

 

7.2.5 Conclusions 

With the Meteonorm Version 8 database, it is possible to simulate solar energy systems in all parts of 
the world on a consistent basis. The interpolation errors are mostly within the variations of climate from 
one year to the next.  

The quality of the interpolation of all parameters was improved with the additional satellite data and 
quality checks of version 8. A difference map of global horizontal irradiation radiation between 
Meteonorm Versions 7.3.2 and 8 is shown in Figure 7.2.1. 

 
Fig. 7.2.1: Yearly sum of Global Horizontal Irradiation (GHI): Difference between Meteonorm 8 and 
7.3.2 
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7.3 Solar trajectory 
In solar energy applications, the knowledge of the geometrical parameters of the solar trajectory is 
necessary. Since version 5.0 (2003) a set of algorithms based on the European Solar Radiation Atlas 
ESRA (2000) is used. In the following formulae, angles are given in radians [rad] when not otherwise 
stated. 

Viewed from a fixed point on the earth's surface, the solar position is defined by two angles (Figs. 
7.3.1 and 7.3.2): 

1. Solar altitude hs: Angle between horizontal plane and line joining the centers of the earth and the 
sun (solar elevation). 

2. Solar azimuth gs: Angle between the projection of the straight line joining the centers of the earth 

and the sun on the horizontal plane and due south. gs > 0 in positive solar direction, gs < 0 in 
negative solar direction. 

zenith

sun

N

ES

W

hs

gs

P

 

Fig. 7.3.1: Solar position viewed from a point P on the earth's surface 
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P: point on earthós surface
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Qz : zenith angle - hs

d: declination

ws : hourly angle

 

Fig. 7.3.2: Solar position (declination, zenith angle and hourly angle) 

The two angles may be expressed as a function of latitude (j), solar declination (d) and hourly angle 

(ws) (7.3.1 to 7.3.4). 
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The declination (d) is the angle between the equatorial plane and the straight line joining the centers of 
the earth and the sun. It is determined by the laws governing the solar trajectory, and can be 
expressed as given in Eqn. 7.3.3a and b (Bourges, 1985). 
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d : declination [rad] dy : day of year  

y: year ɚ :  longitude 
INT stands for integer part of the argument and y for year and dy for day number of the year. 

For the equinox, the declination is zero, for the summer solstice +23.4° and for the winter 
solstice - 23.4°. It is this variation which is responsible for the seasons of the year. 

The hourly angle (ws) is also known as solar time (ST) in radians (7.3.4). 

‫ ὛὝ ρς  (7.3.4) 

The astronomical day begins and ends when the center of the sun's disk is precisely on the (flat) 

horizon. The calculation of the angles of sunrise and sunset (wss) is made using Eqn. 7.3.5, obtained 
by solving Eqn. 7.3.1 with hs = 0. 

‫ ὥὶὧ ὧέίÔÁÎ‌ϽÔÁÎ(7.3.5) ‏ 

 

As an added feature in Meteonorm Version 6.0 the radiation is also modeled for those hours, when the 
elevation is positive at the beginning or the end of the hourly time period, but not at the centre. Either 
the begin or the end (the one with positive elevation) is taken as solar elevation for those hours. For 
those hours the part of the time, when the sun is above the astronomic horizon is calculated. The 
generated radiation values are multiplied with this part. Generally the radiation parameters are very 
small for those hours. 
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Dimensionless quantities 

For many chain links the clearness index is used. This index is defined by 
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Optical air mass  

In calculating the radiation on the earth's surface, the optical mass m is required. This is defined as the 
relative thickness of the air path traversed by a sun's ray when it reaches the earth's surface. For 
vertical impingement of the sunrays at sea level, m assumes the value 1. The value of the optical air 
mass declines with increasing altitude, and increases with declining solar altitude (Eqn. 7.3.7) 

The solar altitude angle is first corrected for refraction. 
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z: Height above sea level [m] hs: Solar altitude angle [rad]  
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7.4 Extraterrestrial solar radiation 
Outside the earth's atmosphere, the solar radiation intensity is 1'366 W/m2 (I0) (7.4.1). A surface 
exposed to the sun can only receive this value if it is placed normal to the direction of radiation. Any 
deviation from this direction leads to a reduction of incident radiation. In the case of a surface lying 
outside the earth's atmosphere that is parallel to the horizontal plane, the radiation is described as 
extraterrestrial horizontal solar radiation (G0). This radiation corresponds to the maximum possible 
radiation which would occur at the earth's surface if it were unhindered by the atmosphere and the 
horizon. 

I0

sun earth

equator

hs

atmosphere

Go

Gh max

j

 

Fig. 7.4.1: Extraterrestrial solar radiation (G0) and maximum radiation for clear sky (Gh max). 

Using the equation for radiation outside the earth's atmosphere and for the solar angle (hs) (7.3.1), the 
extraterrestrial horizontal solar radiation can be calculated (7.4.1) (Sfeir and Guarracino, 1981). 
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where e is the correction to actual solar distance at any specific time in the year. 

dy : day of year hs: Solar altitude angle 
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7.5 Clear sky radiation 
The maximum radiation is defined as the radiation occurring on days with a clear, cloudless sky. Not 
only the global but also the direct and diffuse radiations are of interest. For a cloudless sky, the global 
radiation takes maximum values. The maximum global radiation calculated here corresponds to the 
greatest possible value of global radiation per hour at the specified altitude. For a restricted period, the 
global radiation can attain very high values even with a cloudy sky. This occurs when sunlight, having 
penetrated through intensively reflecting clouds, impinges directly on the earth's surface. The 
maximum global radiation is strongly altitude dependent, and increases with increasing height above 
sea level. At the upper edge of the atmosphere, it takes the value of the extraterrestrial global 
radiation. 

Since version 5.0 of Meteonorm, a new set for clear sky radiation is used. The European Union FP5 

framework project SoDa studies (Remund and Page, 2002) showed that the use of a slightly 
enhanced ESRA clear sky irradiance model (Rigollier et al., 2000) delivers best results. The following 
chapters are a direct result of these studies. 

7.5.1 Underlying basic concepts in the SoDa/ESRA 
clear sky model 

The clarity of the sky above any site has an important impact on the intensity of both the beam irradi-
ance and the amount of scattered diffuse radiation under cloudless sky conditions. A capacity to 
address these issues is critical in achieving sound irradiation estimates.  

Energy is lost from the solar beam by three routes: 

i) molecular scattering by the gases in the atmosphere. 

ii) spectral absorption, for example by gaseous water vapour, primarily located in the 
lower atmosphere, and by ozone, which is located primarily in the stratosphere, and 
also by the permanent atmospheric gases like carbon dioxide. 

iii) scattering and absorption due to natural aerosols and man made aerosols in the 
atmosphere.  

The elevation of the site above sea level reduces the effective atmospheric path length and has to be 
taken into account. The amount of aerosol present in the atmosphere and the amount of water vapour 
present typically decrease exponentially with increases in solar altitude. The modeling process has to 
allow for this. 

The detailed assessment of these impacts is complex. There are advantages for practical users to be 
able to express the impacts of various factors, like variations atmospheric water vapour contents and 
aerosols, in a single easily comprehensible index. The ESRA/SoDa clear sky resource is based on the 
use of the concept of the Linke turbidity factor to achieve this simplicity. The guidance of Kasten 
(1996) was sought in the evolution of the precise formulation adopted. 

The Linke turbidity factor at height z metres above sea level, TL(z), was objectively defined by Kasten 
(1983) as: 

() ()
()z

z
zT

R

D
L d

d
+=1  (7.5.1) 

where  dR(z) is the relative optical thickness relating to Rayleigh scattering by the gaseous molecules 

in the atmosphere and ozone absorption and dD(z) is the relative optical thickness associated with 
aerosol extinction and gaseous absorption other than ozone in the stratosphere. 

Further elaboration may be found in Terzenbach (1995). Note: in some recent scientific studies the 

gaseous absorption by the permanent gases in the atmosphere has been incorporated within  dR(z). 
This produces a different definition of the Linke turbidity factor. 
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The actual path length through the atmosphere is described quantitatively using the concept of the 
relative optical air mass. The relative optical air mass at sea level can be calculated with Eqn. 7.3.7, 
by setting p=p0. 

dR(z) and  dD(z) are both functions of air mass because we are dealing with broadband radiation (as 
opposed to monochromatic radiation). 

The beam irradiance normal to the beam is given by: 

() ()[ ]zzTmIB RLn de ÖÖ-ÖÖ= exp0
  [W/m2] (7.5.2) 

In recent years several scientists have widened the concept of Rayleigh optical thickness to include 
absorption by a range of absorbing gases that occur naturally in the clean dry atmosphere like carbon 

dioxide, oxygen, and certain oxides of nitrogen. This process increases the value of  dR(z), the denomi-
nator in Eqn. 7.5.1, and so yields lower values of the calculated turbidity factor from irradiance 
observations.  

The SoDa/ESRA policy in the face of these recent changes has been to retain a constant quantitative 
definition over historic time of the Linke turbidity factor. The compromise adopted takes advantage of 
recent improved knowledge about the effect of air mass on the Rayleigh optical thickness. The old 
Rayleigh optical thickness values are aligned with the new clear sky optical thickness values at air 
mass 2. This alignment is done by making a defined match at air mass 2 between the new algorithms 
and the old, which have been maintained as the reference for Linke turbidity factor inputs. This 
alignment yields an adjustment factor of 0.8662 needed to achieve this match which is included in 
Equation 7.5.3. 

The beam irradiance normal to the beam is calculated using the standardized original Kasten air mass 
2 Linke turbidity factor, as:  

()[ ]mTmIB RLn de ÖÖÖ-ÖÖ= 8622.0exp0
   [W/m2] (7.5.3) 

where TL is the air mass 2 Linke turbidity factor as defined by Kasten's formulation and m is the 
relative optical air mass corrected for station pressure. 

Kasten has provided the following guideline for typical values of TL in Europe (Tab. 7.5.1). 

Tab. 7.5.1: Typical values of TL in Europe. 
 

Very clean cold air TLK = 2  

Moist warm or stagnating air TLK = 4 to 6 

Clean warm air TLK = 3 

Polluted air  TLK > 6 

 

7.5.2 The estimation of clear sky radiation 

For equations of global clear sky radiation we refer to the publication of Rigollier et al. (2000), chapter 
about irradiance model. 

For diffuse clear sky radiation the following corrections are used: 

The formulation of the horizontal surface diffuse radiation irradiance algorithm in ESRA (2000) and 
Rigollier et al. (2000) did not make any allowance for variations in the site atmospheric pressure 
though such a correction was made in the associated beam estimates. Further investigation has 
shown the desirability of including the pressure correction in the ESRA diffuse algorithm.  

Setting (TL
*) = p/p0 TL, the ESRA diffuse irradiance estimation equations were rewritten as follows: 

() ()*0 Lrdsdc TTFID ÖÖÖ= ge   [W/m2] (7.5.4) 

Trd(TL*) is the diffuse transmittance function which represents the transmittance with the sun at the 
zenith, It is calculated using Eqn. 7.5.5. 

( ) ( )2*4*22* 10797.3100543.3105843.1 LLLrd TTTT ÖÖ+ÖÖ+Ö-= ---

 (7.5.5) 

Fd(gs) is the diffuse solar elevation function which adjusts the diffuse zenith transmittance Trd(TL*) to 

the actual solar elevation angle gs. It is calculated using Eqn. 7.5.6, where gs is in radians. 
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() 2

210 sinsin sssd AAAyF gg Ö+Ö+=  (7.5.6) 

The coefficients A0, A1 and A2 are calculated using Equations 7.5.7: 

( )
( )
( )2**

2

2**
1

2**
0

0085079.003231.033025.1

011161.0018945.004020.2

0031408.0061581.026463.0

LL

LL

LL

TTA

TTA

TTA

Ö+Ö+-=

Ö-Ö+=

Ö+Ö-=

 (7.5.7) 

For regions below approximately 500 m, the changes due to the new formulation are small. In 
Switzerland the clear sky diffuse radiation at 1'000 m a.s.l. is lowered by 10 % and the global clear sky 
is lowered by about 2.5% by this change. At 2'500 m the clear sky diffuse is lowered by 30% and the 
global is lowered by about 3% (the diffuse part forms a smaller proportion of the clear sky global 
irradiation at higher site elevations). 

The outcome of the validation in Rigollier et al. (2000) is therefore not touched by the change, as only 
stations below 500m were used in the validation. 

 

7.5.3 Linke turbidity  

Linke turbidity (TL) is used for input of the ESRA clear sky model. For version 7.2 a new turbidity 
climatology has been included. Itôs based on the database of Solar Consulting Services (Gueymard, 
2012) and includes ground and satellite measurements (MODIS and MISR) of the period 2000-2015. 

In opposition to the data used between version 6 and 7.1 no need for further reduction of TL data is 
needed.  

High turbidity values are reduced more than lower values. For mean conditions at mid latitudes and 
industrialized regions like Europe with Linke turbidity of about 5, the value is lowered by 20% to a 
value of 4. 

Additionally it was detected, that with varied turbidity values the observed distribution of clear sky 
conditions could be matched better. Also models producing beam radiation gave better results, when 
using varied turbidities. By default the daily Linke turbidity (TLd) values are varied stochastically 
(optionally it can set constant) (Eqn. 7.5.8). 
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 (7.5.8) 

f1
:  First order autocorrelation  

( )mTLs : Standard deviation of y perturbations depending on monthly means of TL 

¡s : Standard deviation of the normally distributed random function; the constant has been 

 enhanced from 0.1 to 0.25 for version 7.2. 

r : Normally distributed random variable with expected value 0 and standard deviation ¡s . 

World digital maps of the Linke turbidity factor have been prepared on a 0.5ò grid as a basic resource 
(Fig. 7.5.1).  
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Fig. 7.5.1: Yearly long term mean of Linke turbidity factor (period 2000 ï 2015). 

The given TL values are coupled to the mean altitude of the pixels. In the software, the TL values are 
adopted to the real altitude of the sites with the following equation: 

() ( ) ( )
ö
÷
õ

æ
ç
å -Ö=

6000
exp 12

21
zzzTzT LL  (7.5.9) 

 

7.5.4 Solis 2017 clear sky model 

With Meteonorm Version 7.3 optionally the clear sky model Solis 2017 (Ineichen, 2018) is available. 
This model is specially adapted to high turbidity locations. It delivers more realistic results for such 
areas as Sahel zone (and other areas with high values ï see Fig. 7.5.1), where ESRA model tends to 
induce too high diffuse values. However, up to now the model hasn't been validated in the chain of 
algorithms of Meteonorm. 
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7.6 Generation of global radiation 
To meet today needs, monthly average data is no longer sufficient, and many design codes call for 
hourly or minute data. However, since the interpolation of hourly values at arbitrary locations is 
extremely time consuming (only feasible using satellite data), and necessitates extensive storage 
capacity, only interpolated monthly values at nodal points are stored. 

In order to generate hourly values at any desired location, stochastic models are used. The stochastic 
models generate intermediate data having the same statistical properties as the measured data, i.e. 
average value, variance, and characteristic sequence (autocorrelation). The generated data 
approximates the natural characteristics as far as possible. Recent research shows that data 
generated in this way can be used satisfactorily in place of long-term measured data (Gansler et al., 
1994). 

The following generation procedure is adopted. Starting with the monthly global radiation values, first 
the daily values, then the hourly and minute values are generated stochastically. Further characteristic 
values, e.g. temperature, humidity, wind, longwave radiation, are derived from these as required. 

7.6.1 Stochastic generation of global radiation 

7.6.1.1 Generation of daily values 

For generation of daily values a new model was introduced in version 5.0 as an outcome of the SoDa 
project. 

The model of Aguiar et al. (1988), used already in versions 2ï4, provides the starting point for this 
methodology. It calculates daily values of Gd with monthly mean values of Gm as inputs. The following 
changes have been introduced: 

The original model gives one single distribution of daily clearness index KTd values for any one 
monthly mean value KTm. The model does not take into account any local factors like site altitude 
above sea level (higher maximum irradiation values at higher altitude) or different turbidity situations. 
There are also problems with the coupling to the clear sky model of ESRA when this original model is 
used in the SoDa chain of algorithms. The estimated clear sky values, using Chain 1, can be much 
higher or much lower than the maximum values predicted by the unmodified Aguiar. 

The whole system of the matrices was therefore changed from a clearness index basis to a clear sky 
clearness index basis. Formulated like this, the maximum value of KTd,c (=1) must correspond auto-
matically to the clear sky model predictions used. KTd,c is calculated as the ratio Gd/Gc,d. 

The mapped resource of monthly mean Linke turbidity factors (Fig. 7.5.1) is used to drive the clear sky 
model using algorithmic to obtain the required monthly mean daily values of Gc,d needed to calculate 
KTd,c in any selected month for any point. This change required the daily Markov transition matrices 
tables to be completely revised to match the new formulation. The new tables giving the revised 
distributions and their validation in application are discussed in the chapter Chapters 7.6.1.2 and 
7.6.1.3. 

Example: generation of a sequence for one month 

This Section is based on the description of the methodology by Aguiar et al. (1988). It gives an exam-
ple of how to use the Markov Transition Matrices (MTM) to calculate a daily sequence of clear sky 
daily clearness indices. 

Suppose that, for each month of the year, the location X has the following values of monthly clear sky 
clearness indices KTm,c: 
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 January February November December 

KTm,c 0.424 0.522 0.475 0.389 

 

In a first step the clear sky monthly mean KTm,c values have to be calculated from the monthly global 
radiation and monthly clear sky radiation. 

A simulation for the month of January would proceed as follows. 

1. The appropriate MTM is selected using the value of KTm,c for Jan.: since 0.40 < KTm,c Ò 0.50 the 
appropriate matrix is Table 7.6.4. 

2. The daily KTd,c value corresponding to day 1 of the series to be generated is calculated by assum-
ing that KTm,c (Month 0) i.e. KTm,c(Dec.) = 0.389. 

3. Note that KTm,c(Month = 0) belongs to the interval 0.3ï0.4, which is line 4 of the selected MTM.  
4. Using a random number generator with a uniform distribution between 0 and 1, suppose a number 

R = 0.350 is found. This is used to determine the next state of KTd,c. by summing the values of 
P41+P42+...+P4j (4th row, jth column of Table B5) until the sum is greater than R. This finds the state 
in which KTd,c. will be in the next day. In this case, the result is P41+P42+P43+P44 = 
0.020+0.111+0.175 +0.208 = 0.514. 

 
The first and simplest way to calculate the new value of KTd,c(1) consists of giving it the value of the 
intervals corresponding to the new state column j = 4, in this case 0.40 (j = 1 would mean 0.1, j = 2 
would mean 0.2, ...). Another slightly more complicated way, which is used here, depends on a linear 
interpolation within the interval. In this case, the procedure is best described in terms of the distribution 
function for state i: 

( ) ( )ñ=
cdKT

cdcdcdi dKTKTPKTF
,

0

'

,

'

,,
 (7.6.1) 

which in this (discrete) case has a graphical form like the on shown in Figure 7.6.1. This Figure also 
shows how KTd,c is found at the intersection of the horizontal line at R with the linear interpolation 
within the appropriate interval of KTd,c. In the present example, the final result using this process is 
KTd,c(1) = 0.321. 

The second day of the sequence, KTd,c(2) is found by taking KTd,c(1) as the previous day's value and 
repeating steps (2) to (4). A series KTd,c(dy) with 31 values is thus obtained for January. Daily global 
radiation is calculated by multiplying KTd,c(dy) with the clear sky global radiation Gd(dy). 

The average value of this sequence may not be equal to the monthly mean global radiation in the 
starting data. The synthetic data generation process is repeated until a sequence is obtained that lies 
within the desired limits of accuracy. This limit is set in the SoDa procedures to 1%. 

  



Theory  Meteonorm 16 

 
Fig. 7.6.1: Obtaining the daily clear sky clearness index using a random number R and interpolating 

in the accumulated probabilities of the transition supplied by the MTM library of the 
previous KTd,c(dy-1) value. 

7.6.1.2 New Markov transition matrices (MTM) 

The new Markov transition matrices (MTM) were calculated using a total of 121 stations, drawn from 
the USA (from San Juan PR to Barrow AK), Europe, North Africa and Saudi Arabia. These cover all 
major climate zones. The original Aguiar et al. version was made with data from 12 stations. 

The result is a 9x10x10 matrix. Values of 0.05 and 1 were used as the minimum and maximum values 
of daily clear sky clearness index. The classes of the monthly KTd,c were set from 0.1ï0.2, 0.2ï0.3, ..., 
0.9ï1.0. No monthly values of KTd,c below 0.1 were found (this is the reason for the 9x10x10 matrix). A 
second change was made in accepting only daily values smaller than 102% of the estimated clear sky 
value. This is especially important for high latitude sites during spring and autumn, where the day 
length changes very much during each month.  

The issue, whether more parameters could enhance the quality of random generation, was explored. 
Different MTMs were calculated for continental and maritime climates, as well as for low solar and high 
solar elevations. As none of the additional parameters led to significantly better results, they were not 
used. The problem of too low daily clearness index was also examined and found not to be of great 
importance. Only an overall minimum KTd,c value of 0.05 was set. Tables 7.6.1 to 7.6.9 show the 
Markov transition matrices.  

For version 6 MTMôs for KT <= 0.20 have been changed in order to able to generate data for more 
diverse climates. As for the production of these tables not enough values have been available and 
therefore the distribution is not representive. The introduced values are grouped mainly around the 
diagonal line, which means, that the weather does not change much from day to day. 

Tab. 7.6.1: Markov transition matrix for 0.10 < KTm,c Ò 0.20 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.500 0.280 0.150 0.050 0.020 0.000 0.000 0.000 0.000 0.000 
0.1-0.2 0.200 0.480 0.200 0.100 0.020 0.000 0.000 0.000 0.000 0.000 

0.2-0.3 0.050 0.200 0.480 0.200 0.050 0.020 0.000 0.000 0.000 0.000 
0.3-0.4 0.020 0.050 0.180 0.500 0.180 0.050 0.020 0.000 0.000 0.000 

0.4-0.5 0.000 0.020 0.050 0.180 0.500 0.180 0.050 0.020 0.000 0.000 
0.5-0.6 0.000 0.000 0.020 0.050 0.180 0.500 0.180 0.050 0.020 0.000 

0.6-0.7 0.000 0.000 0.000 0.000 0.050 0.200 0.300 0.200 0.000 0.250 
0.7-0.8 0.000 0.000 0.000 0.000 0.020 0.050 0.200 0.480 0.200 0.050 

0.8-0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.200 0.500 0.250 
0.9-1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.200 0.050 0.050 0.700 
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Tab. 7.6.2: Markov transition matrix for 0.20 < KTm,c Ò 0.30 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.500 0.280 0.150 0.050 0.020 0.000 0.000 0.000 0.000 0.000 
0.1-0.2 0.200 0.480 0.200 0.100 0.020 0.000 0.000 0.000 0.000 0.000 

0.2-0.3 0.100 0.650 0.200 0.050 0.000 0.000 0.000 0.000 0.000 0.000 
0.3-0.4 0.000 0.250 0.000 0.050 0.300 0.050 0.000 0.000 0.050 0.300 

0.4-0.5 0.000 0.400 0.050 0.100 0.400 0.050 0.000 0.000 0.000 0.000 
0.5-0.6 0.000 0.000 0.000 0.000 0.250 0.500 0.250 0.000 0.000 0.000 

0.6-0.7 0.000 0.000 0.000 0.000 0.000 0.250 0.500 0.250 0.000 0.000 
0.7-0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.500 0.250 0.000 

0.8-0.9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.500 0.250 
0.9-1.0 0.000 0.000 0.000 0.000 0.000 0.700 0.050 0.000 0.000 0.250 

Tab. 7.6.3: Markov transition matrix for 0.30 < KTm,c Ò 0.40 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.133 0.319 0.204 0.115 0.074 0.033 0.030 0.044 0.011 0.037 
0.1-0.2 0.081 0.303 0.232 0.127 0.088 0.060 0.029 0.031 0.018 0.033 

0.2-0.3 0.036 0.195 0.379 0.135 0.087 0.039 0.042 0.027 0.025 0.036 
0.3-0.4 0.032 0.190 0.205 0.189 0.119 0.069 0.059 0.038 0.045 0.054 

0.4-0.5 0.051 0.175 0.189 0.185 0.140 0.079 0.060 0.040 0.017 0.064 
0.5-0.6 0.042 0.213 0.243 0.126 0.117 0.090 0.045 0.036 0.021 0.069 

0.6-0.7 0.017 0.166 0.237 0.141 0.100 0.091 0.054 0.062 0.046 0.087 
0.7-0.8 0.038 0.171 0.190 0.133 0.095 0.090 0.057 0.062 0.043 0.119 

0.8-0.9 0.044 0.093 0.231 0.143 0.115 0.066 0.038 0.060 0.099 0.110 
0.9-1.0 0.029 0.131 0.163 0.127 0.062 0.092 0.065 0.072 0.078 0.180 

 

Tab. 7.6.4: Markov transition matrix for 0.40 < KTm,c Ò 0.50 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.116 0.223 0.196 0.129 0.093 0.077 0.054 0.044 0.032 0.037 
0.1-0.2 0.051 0.228 0.199 0.143 0.101 0.083 0.065 0.052 0.035 0.043 

0.2-0.3 0.028 0.146 0.244 0.156 0.120 0.092 0.069 0.053 0.040 0.052 
0.3-0.4 0.020 0.111 0.175 0.208 0.146 0.104 0.074 0.067 0.044 0.052 

0.4-0.5 0.017 0.115 0.161 0.177 0.155 0.102 0.085 0.067 0.054 0.068 
0.5-0.6 0.018 0.114 0.147 0.156 0.142 0.123 0.088 0.075 0.060 0.077 

0.6-0.7 0.019 0.116 0.152 0.153 0.133 0.100 0.090 0.078 0.061 0.098 
0.7-0.8 0.022 0.105 0.145 0.134 0.112 0.109 0.103 0.085 0.077 0.108 

0.8-0.9 0.016 0.100 0.119 0.120 0.100 0.105 0.099 0.096 0.120 0.126 
0.9-1.0 0.012 0.081 0.109 0.115 0.101 0.082 0.075 0.091 0.107 0.226 

Tab. 7.6.5: Markov transition matrix for 0.50 < KTm,c Ò 0.60 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.095 0.201 0.140 0.121 0.112 0.076 0.073 0.066 0.055 0.061 
0.1-0.2 0.029 0.176 0.158 0.133 0.121 0.096 0.078 0.079 0.067 0.063 

0.2-0.3 0.015 0.096 0.171 0.157 0.139 0.121 0.093 0.080 0.066 0.062 
0.3-0.4 0.008 0.055 0.103 0.199 0.186 0.130 0.108 0.085 0.063 0.063 

0.4-0.5 0.006 0.039 0.077 0.145 0.236 0.167 0.113 0.083 0.064 0.069 
0.5-0.6 0.006 0.044 0.080 0.128 0.192 0.166 0.123 0.100 0.081 0.080 

0.6-0.7 0.006 0.049 0.082 0.132 0.152 0.139 0.125 0.110 0.095 0.109 
0.7-0.8 0.007 0.047 0.086 0.113 0.138 0.125 0.114 0.124 0.112 0.134 

0.8-0.9 0.006 0.048 0.079 0.105 0.120 0.108 0.100 0.120 0.138 0.177 
0.9-1.0 0.005 0.033 0.062 0.085 0.102 0.086 0.088 0.103 0.144 0.291 

Tab. 7.6.6: Markov transition matrix for 0.60 < KTm,c Ò 0.70 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.061 0.169 0.146 0.095 0.106 0.094 0.108 0.085 0.067 0.070 
0.1-0.2 0.023 0.113 0.130 0.114 0.107 0.111 0.102 0.108 0.100 0.092 

0.2-0.3 0.007 0.062 0.105 0.132 0.151 0.126 0.113 0.106 0.097 0.100 
0.3-0.4 0.004 0.026 0.063 0.150 0.189 0.147 0.118 0.108 0.097 0.099 

0.4-0.5 0.002 0.017 0.040 0.098 0.230 0.164 0.130 0.111 0.103 0.106 
0.5-0.6 0.002 0.016 0.040 0.084 0.162 0.179 0.149 0.129 0.119 0.120 

0.6-0.7 0.003 0.018 0.040 0.079 0.142 0.143 0.153 0.140 0.139 0.144 
0.7-0.8 0.002 0.017 0.041 0.079 0.126 0.120 0.135 0.151 0.162 0.167 

0.8-0.9 0.002 0.017 0.034 0.069 0.108 0.106 0.114 0.144 0.191 0.215 
0.9-1.0 0.001 0.012 0.023 0.050 0.083 0.079 0.088 0.118 0.185 0.362 
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Tab. 7.6.7: Markov transition matrix for 0.70 < KTm,c Ò 0.80 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.049 0.091 0.112 0.070 0.098 0.077 0.105 0.119 0.112 0.168 
0.1-0.2 0.019 0.070 0.090 0.105 0.119 0.113 0.103 0.134 0.121 0.125 

0.2-0.3 0.005 0.028 0.074 0.114 0.130 0.123 0.113 0.118 0.145 0.151 
0.3-0.4 0.001 0.011 0.039 0.102 0.169 0.135 0.123 0.126 0.136 0.156 

0.4-0.5 0.001 0.007 0.021 0.062 0.175 0.143 0.132 0.137 0.157 0.167 
0.5-0.6 0.001 0.007 0.020 0.049 0.117 0.146 0.150 0.157 0.172 0.182 

0.6-0.7 0.000 0.005 0.015 0.047 0.097 0.122 0.151 0.169 0.197 0.197 
0.7-0.8 0.001 0.006 0.016 0.040 0.084 0.098 0.130 0.179 0.224 0.223 

0.8-0.9 0.001 0.005 0.011 0.034 0.067 0.079 0.107 0.161 0.262 0.275 
0.9-1.0 0.000 0.003 0.007 0.022 0.045 0.055 0.074 0.112 0.222 0.459 

Tab. 7.6.8: Markov transition matrix for 0.80 < KTm,c Ò 0.90 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.000 0.000 0.077 0.077 0.154 0.077 0.154 0.154 0.077 0.231 
0.1-0.2 0.000 0.043 0.061 0.070 0.061 0.087 0.087 0.217 0.148 0.226 

0.2-0.3 0.000 0.017 0.042 0.073 0.095 0.112 0.120 0.137 0.212 0.193 
0.3-0.4 0.001 0.003 0.015 0.055 0.106 0.091 0.120 0.139 0.219 0.250 

0.4-0.5 0.000 0.002 0.009 0.035 0.097 0.113 0.123 0.155 0.209 0.258 
0.5-0.6 0.000 0.002 0.007 0.028 0.063 0.089 0.123 0.157 0.235 0.295 

0.6-0.7 0.000 0.002 0.005 0.020 0.054 0.069 0.114 0.170 0.260 0.307 
0.7-0.8 0.000 0.001 0.004 0.015 0.043 0.058 0.097 0.174 0.288 0.320 

0.8-0.9 0.000 0.001 0.002 0.011 0.027 0.039 0.071 0.139 0.319 0.390 
0.9-1.0 0.000 0.001 0.001 0.005 0.015 0.024 0.043 0.086 0.225 0.600 

Tab. 7.6.9: Markov transition matrix for 0.90 < KTd,c Ò 1.00 

 0.0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

0.0-0.1 0.500 0.250 0.200 0.050 0.000 0.000 0.000 0.000 0.000 0.000 
0.1-0.2 0.200 0.500 0.200 0.050 0.050 0.000 0.000 0.000 0.000 0.000 

0.2-0.3 0.000 0.000 0.250 0.000 0.000 0.000 0.250 0.250 0.000 0.250 
0.3-0.4 0.000 0.000 0.000 0.000 0.048 0.000 0.143 0.095 0.190 0.524 

0.4-0.5 0.000 0.000 0.014 0.000 0.027 0.041 0.041 0.233 0.192 0.452 
0.5-0.6 0.000 0.000 0.000 0.008 0.039 0.031 0.078 0.093 0.326 0.425 

0.6-0.7 0.000 0.000 0.000 0.006 0.019 0.019 0.067 0.102 0.254 0.533 
0.7-0.8 0.000 0.000 0.000 0.005 0.012 0.024 0.041 0.106 0.252 0.560 

0.8-0.9 0.000 0.000 0.000 0.001 0.006 0.012 0.031 0.078 0.283 0.589 
0.9-1.0 0.000 0.000 0.000 0.001 0.002 0.004 0.012 0.029 0.134 0.818 

 

7.6.1.3 Validation 

The calculated mean values are adapted to the measured, so there is no difference at this level. The 
distribution has been tested at 5 stations of the Baseline Surface Radiation Network (BSRN) (WRCP 
2001) (Table 7.6.10) with Kolmogorov-Smirnov (KS) test (Massey 1951). 

The interval distance p is defined as 

100,minmax =
-

= m
m

xx
p

 

(7.6.2) 

where xmin and xmax are the extreme values of the independent variable. Then, the distances 
between the cumulative distribution function are defined, for each interval, as 

() () ( )[ ]npxpnxxxRxFD iiin +++Í-= minmin ,1,max  (7.6.3) 

If at any of the intervals considered, this distance as given in equation (Eqn. 7.6.3) is above a critical 
value Vc (which depends on the population size N) the null hypothesis that the sets are statistically the 
same must be rejected. The critical value is calculated for 99% level of confidence (Eqn. 7.6.4) 

35,
63.1

²= N
N

Vc

 

(7.6.4) 

A special test (KSI over) (Espinar et al., 2009) was used to estimate the proportion of the distribution, 
where the critical value is overshot: 
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The KSI over % parameters are then calculated as the trapezoidal integral of that auxiliary vector and 
its corresponding normalization to the critical area: 

100
  

over% Ö=
ñ

criticala

dxaux
KSI

 

(7.6.6) 

where acritical is calculated as 

( )minmax xxVa ccritical -Ö=  (7.6.7) 

 

Generally a good agreement is achieved. At 4 of the 5 sites the distributions are statistically the same 
(Table 7.6.10). Figure 7.6.2 shows a typical cumulative distribution function for Camborne (GBR).  

Tab. 7.6.10: Kolmogorov-Smirnov (KSI over %) test for daily global radiation and clearness index. 

Site Year 
Gh day 
KSI over % 

Kt day 
KSI over % 

Payerne (CHE) 2005 0.0% 0.0% 

Camborne (GBR) 2005 0.0% 0.0% 

Goodwin Creek (MS, USA) 2005 0.0% 1.4% 

Alice Springs (AUS) 2005 0.0% 0.0% 

Ilorin (NGR) 1997 7.9% 3.8% 

 

 

Fig. 7.6.2:  Cumulative distribution functions of daily values of global irradiance for Camborne (GBR). 
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7.6.1.4 Generation of hourly values from daily values 

The generation of hourly values is based on the model of Aguiar and Collares-Pereira (1992) (TAG-
model: Time dependent, Autoregressive, Gaussian model). This model consists of two parts: the first 
part calculates an average daily profile (Eqn. 7.6.8); the second part simulates the intermittent hourly 
variations by superimposing an autoregressive procedure of the first order (AR(1)-procedure) (Box et 
al., 1994) (Eqn. 7.6.10). 

() () ()hyhkhk
Mtt +=  (7.6.8) 

()hkt : hourly clearness index  

()hk
Mt : hourly clearness index of the average daily profile  

()y h : first order autoregressive function  

h : hour 

Average daily profile 

The proposed model is based on the clear sky daily profile: 

dc

c
d

Gh

Gh
GhGh

,

Ö=  (7.6.9) 

where Ghd is the daily global horizontal irradiance, Ghc the clear sky hourly global irradiance, Ghc,d the 
daily clear sky global irradiance. Other authors like Grüter et al. (1986) have used this approach as 
well. Clearness index ktM is calculated with Eqn. 7.3.6. Fig. 7.6.3 shows typical forms of the profiles. 

 
Fig. 7.6.3: Mean daily profiles of KTh for daily KTd values of 0.6 at San Juan PR. 

At noon all lines are very close. At low solar altitude the measured values are lower than the modelled 
ones; the new model is in between the measurements and the values of the model used in ESRA. 
Further, significantly higher KTh values are measured and calculated for very low solar altitudes. The 
model quite often yields ï as do the measured values ï higher KTh values for the first and the last hour 
of the day. This is due to the one dimensional concept of the clearness index, where, as in nature, the 
radiation ï particularly at low solar elevation ï is influenced by the three dimensional form of the 
atmosphere. To avoid unreasonable values, the KTh values are limited to values of 0.8 for solar 
elevation below 10°. 

 

Hourly variations 

The amplitude of the daily profile and the standard deviation of the perturbations are dependent on the 
daily Kt value and the solar altitude. The first order autocorrelation depends on the Kt value, i.e. it is 
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smaller for high and low values of Kt than for central values. The standard deviation of two adjacent 
hourly values is far greater for central Kt values than for extreme values (Eqn. 7.6.10). Owing to this, 
the daily profiles at small daily average radiation are comparatively flat, for central values highly 
intermittent, and for large values flat again. 

The model is site independent. Model definition and validation were performed using data from 
Belgium, Germany, Switzerland, United Kingdom, Australia and USA. The autoregressive function y(h) 
is determined as follows: 
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( ) ( )[ ]
( )
( )s

fss

s

f

f

¡=

-Ö=¡

+-Ö-Ö=

Ö+Ö-Ö+=

+-Ö=

,0

1

002.04.050exp32.0

758.3195.5356.2148.0

1

5.02

1

2

32

1

1

Nr

KK

KKK

rhyhy

tt

ttt

 (7.6.10) 

 

f1
:  First order autocorrelation  

( )tKs : Standard deviation of y perturbations  

¡s : Standard deviation of the normally distributed random function   

r : Normally distributed random variable with expected value 0 and standard deviation s'  

Limiting KTh values are set for clear sky radiation, where an overshoot of 10% is allowed. There is also 
the condition that only positive values can occur. The application of limiting values does, however, 
alter the AR(1) procedure, since the hourly average values of the perturbations are then no longer 
normally distributed. The result is a reduction of the first order auto-correlation, i.e. the generated data 
do not display the auto-correlation values defined by the model. This became apparent during valida-
tion of the TAG model. A decision was made to modify the auto-correlation function.  

In Version 6.0 new limiting conditions have been introduced in order to lower this effect. Instead of 
capping the values outside the limits, the y values have been stretched to the allowed minimum and 
maximum values.  

It is essential that the auto-correlation and the standard deviation be both correctly modelled. When 
using the Perez (1991) model to calculate diffuse radiation from the (generated) global radiation, the 
model uses a time series of Gh (3 successive hourly values). The problem of the non-Gaussian 
distribution of the intermittent hourly values was accounted for in Graham and Holland's (1990) model 
using a function that maps the Gaussian distribution to a beta distribution. A simpler procedure was 
chosen in the present model. The distortion of the first order correlation is corrected using a 
multiplication factor, k (Eqn. 7.6.11). In this procedure, the value of the standard deviation, which is 
well reproduced by the model, is retained. Thus, in calculating the standard deviation, the uncorrected 
first order auto-correlation value must be used. The effect of including the factor k would be to 

increase the standard deviation. Since, however, f1 is reduced again during data generation. The 
standard deviation defined by the model can be used.  

() ( )

.02= :factor  correction

11

k

rhykhy +-ÖÖ= f
 (7.6.11) 

 

The autocorrelation function has been adopted to 5 BSRN sites in the USA (Fig. 7.6.4). This subset 
was chosen, as it showed the best results (for all test sites). The standard deviation model has been 
modeled by hand. Adopted models showed less good results. 
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Fig. 7.6.4: Left: First order autocorrelation as a function of daily Kt value adopted for five BSRN 
stations in the USA. Right: Modeled standard deviation function. 

The TAG model permits small discrepancies between the daily and monthly average value of the 
generated values and the given values. The generated values are modified accordingly to ensure that 
the average values are always equal (as would be expected). If the daily or the monthly average of the 
generated data differs from the original value by less than 5%, the generated data are multiplied by a 
normalisation factor, otherwise the hourly values are regenerated using a new run. The procedure 
causes no appreciable distortion of the data distribution. 

During validation it became clear, that the generation process is clearly linked to the diffuse generation 
process. Changing this model, also the diffuse generation is changed. 

 

Validation 

The calculated mean values are adapted to the measured, so there is no difference at this level. The 
distribution has been tested at 5 BSRN sites (Tab. 7.6.12) with Kolmogorov-Smirnov (KS) test: 
Generally a good agreement is achieved. Nevertheless at all sites there are areas, where the critical 
value is overshot (Tab. 7.6.11). Most of the sites show biggest differences at 50-300 W/m2. Figure 
7.6.5 shows a typical cumulative distribution function for Camborne (GBR). Figure 7.6.6 shows the 
histograms of the same site. 

Tab. 7.6.11: Kolmogorov-Smirnov test (KSI over %) for hourly global radiation and clearness index. 
 

Site Gh 
KSI over 
% 

Kt 
KSI over 
% 

Payerne (CHE) 37.9% 0.9% 

Camborne (GBR) 3.6% 3.2% 

Goodwin Creek (MS, USA) 14.3% 2.8 

Alice Springs (AUS) 14.2% 2.2% 

Ilorin (NGR) 19.5% 0.2% 
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Fig. 7.6.5: Cumulative distribution functions of hourly values of global irradiance for Camborne 
(GBR). 

 

Fig. 7.6.6.  Histograms of hourly global irradiance for Camborne (GBR) depending on the daily 
clearness index (Kt). Measured values: full line, generated: dotted line 

The autocorrelation was examined for 17 sites (Tab. 7.6.12). The first autocorrelation value (ac(1) ï 

which is the measured equivalent to f1 in Eqn. 7.6.13) and the standard deviation (sd ï which is the 

measured equivalent of s in Eqn. 7.6.13) depending on the daily clearness index (Kt) were compared 
graphically (Fig. 7.6.7). The autocorrelation ac(1) is underestimated on average by 14%, the standard 
deviation (sd) is underestimated on average by 23% (Tab. 7.6.13). Tests with enhanced values 
showed better results in this test, but did lead to much less accurate beam and diffuse separation. 
This was the reason to leave the values at this level. 
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Fig. 7.6.7: Comparison of measured values (full line) and generated (dotted line) autocorrelation 
(ac(1)) and standard deviation sd at Cambourne (GBR). 

Table 7.6.12: Measured autocorrelation (AC(1)) and standard deviation and factors of the generated 
values. 
 

Site AC(1) 
mes. 
[ ] 

AC(1) 
gen 
factor [%] 

Std dev. 
mes. 
[ ] 

Std dev. 
mes. 
factor [%] 

Payerne 0.590 78.8 0.174 68.0 

Alice Springs 0.473 71.5 0.121 105.6 

Camborne 0.476 93.3 0.108 77.9 

Bondville 0.561 74.0 0.144 78.8 

Goodwin Creek 0.538 84.4 0.127 90.3 

Penn State Univ. 0.489 86.3 0.128 89.3 

Desert Rock 0.599 52.2 0.158 73.1 

Sioux Falls 0.548 80.6 0.140 85.7 

Table Mountain 0.495 79.9 0.157 87.7 

Fort Peck 0.564 66.7 0.140 81.6 

Mean value  76.7  83.8 
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7.7 Radiation on inclined surfaces 
Radiation data on horizontal surfaces is seldom needed. A collector, the wall of a building, or a roof, 
for example, regards the sun from another "viewpoint". Thus methods are required by means of which 
the hourly values can be obtained by transforming given (generated) radiation data to an arbitrarily 
orientated surface. 

The calculation of radiation on an inclined surface using (generated) hourly values of global horizontal 
radiation is done in two steps: First the average hourly global horizontal radiation (Gh) values are 
resolved into direct and diffuse components (7.7.1).  

)sin(

G

snhh

hhh

hBDG

BD

Ö+=

+=
 (7.7.1) 

where Bn = direct normal radiation (ñbeamò, ñDNIò), Bh = direct horizontal radiation and  
Dh = diffuse radiation 

The separation is done using the model of Perez et al. (1991). With version 7 two additional models 
have been added. In a second step, the radiation on an inclined surface is calculated with the help of 
these components. For this, another model of Perez (1986) is used. The second model also includes 
the effect of raised skyline.  

7.7.1 Calculation of radiation components with 
given global horizontal radiation 

Two models are available for the separation of global radiation into beam and diffuse: 

¶ Perez model (1991)  

¶ Boland ï Ridley - Lauret (BRL) model (Ridley et al., 2010) (added for version 7.0) 

7.7.1.1 Perez model 

The dynamic model of Perez et al. (1991), which transforms global hourly horizontal radiation values 
into hourly values of direct normal radiation (direct radiation on a surface normal to the radiation) is 
based on parameters defining sky conditions. The model requires input in the form of time series of 
global radiation values. The model can also be extended to include the dew point temperature. Itô used 
a the default model of Meteonorm. 

The model, in fact, is based on a variable selection of input parameters. The greater the number of 
available parameters, the better the approximation of direct normal radiation. The following input is 
required: 

¶ Global horizontal radiation, or alternatively, normalized clearness index kt', whereby for kt' a 
formula independent of the zenith angle is used (Perez et al. 1990b). 

¶ Zenith angle of the sun. 

¶ When time series of global radiation are available, a stability index Dkt' can be calculated giving 

the dynamics of the time series. ( )11 ''''5.0' -+ -+-Ö=D ititititt kkkkk  where points i and i + 1 

refer to the present, previous and subsequent hour. 

¶ When the dew point temperature is available, it can be used to provide an accurate estimate of 
water content (humidity) in the atmosphere which in turn influences the absorption and the 
production of aerosols. The humidity is estimated on the basis of dew point temperature by the 
method of Wright et al. (1989). 
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The present model was derived empirically from a large series of data for a range of climatic regions in 
Europe and America. Depending on the form of the input data, it utilizes two to four parameters. It 
consists in the main of look-up tables together with a simple mathematical section. 

Further information on the models and their mode of operation may be found in the conference 
proceedings of the International Solar Energy Society (Perez et al., 1991). 

7.7.1.2 Validation 

Beam radiation is tested in two steps. First the model was tested alone with measured hourly values of 
global radiation as input, and secondly within the combined model using generated hourly values.  

Test using measured hourly values: 

The tests were carried out for 4 BSRN weather stations. For Perez model the average mbe error was 
3 W/m2 (only daytime hours) (generated values slightly too high) and the rmse standard deviation  
86 W/m2 (Gh > 0). BRL model shows slightly bigger deviations with a mean mbe of 12 W/m2 and a 
mean rmse of 93 W/m2. 

Station Year mbe 
Perez 
[W/m2] 

mbe 
BRL 
[W/m2] 

rmse 
Perez 
[W/m2] 

rmse 
BRL 
[W/m2] 

Payerne  2005 4.8 2.3 78.5 73.3 

Camborne 2005 17.0 14.2 70.7 72.7 

Goodwin Creek 2005 -15.2 -6.0 85.4 102.6 

Desert Rock 2005 3.5 37.2 108.5 123.8 

 

Test using generated hourly values: 

The model performance has been tested at 18 high quality sites with multi year measurements by 
looking at the yearly means of generated beam irradiances (Tab. 7.7.1). The two available direct 
radiation models have been tested. The two models are similar. The results depend on the stations 
chosen.  

With the ñPerezò model the calculated yearly means of beam radiation have a relative mean bias error 
(mbe) of -0.9 % and a root mean squared error (rmse) (definition e.g. in Argiriou, 1999) of 7.0%. The 
BRL model has an mbe of -2.1% and and RMSE of 6.6%. 

The shown accuracy seems higher compared to older examinations by using the measured monthly 
global radiation data as input (instead of mean values) and using only newer and high quality 
measurements. 

On a global scale, the error in calculated beam radiation does not show regional patterns. The error 
distribution shows a slight yearly pattern. In winter the rmse are registered somewhat bigger.  
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Tab. 7.7.1: Comparison between yearly means of measured and generated beam values.  
 

Station Years Meas. 
[kWh/m2] 

Difference 
Perez [%] 

Difference 
BRL [%] 

Payerne 1996-2010 1183 1.2% -1.5% 

Lindenberg 1995-2006 972 6.9% 1.3% 

Cabauw 2005-2015 915 6.1% 1.4% 

Tateno 2001-2015 1232 -13.4% -13.2% 

Carpentras 1997-2015 1839 -4.6% -7.6% 

Billings 1994-2011 1794 -6.7% -7.7% 

Chesapeake 2001-2015 1598 -10.3% -11.3% 

Alice Springs 1996-2015 2643 -7.3% -7.4% 

Kwajalein 1998-2015 1490 -10.3% -4.6% 

Toravere 2006-2015 1044 -0.7% -5.8% 

S. Martinho 2008-2014 1524 2.4% 3.1% 

Fort Peck 1999-2015 1676 12.2% 7.8% 

Goodwin Creek 1999-2015 1617 -4.7% -4.7% 

Table Mountain 1999-2015 1975 5.9% 7.5% 

Sioux Falls 1999-2015 1628 7.2% 1.8% 

Desert Rocks 1999-2015 2800 1.8% 2.1% 

Bondville 1999-2015 1481 2.6% 0.8% 

Penn State 1999-2015 1241 0.6% -0.4% 

Bias %   -0.9% -2.1% 

RMSE %   7.0% 6.6% 

 

 

Fig. 7.7.1:  DNI generated vs. measured (Perez model). 

The distributions of generated and measured beam radiation are similar, but do differ statistically. In 
Table 7.7.2 the KSI% test at 4 sites for hourly beam radiation are listed. The tests differ very much 
from one site to another. The reason for this behaviour is not known. BRL shows slightl better results 
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as Perez model show ï but not for all sites. Figure 7.7.2 and 7.7.3 show the distributions for Payerne 
and Carpentras. 

Tab. 7.7.2: Kolmogorov-Smirnov test (KSI over %) for hourly beam radiation. 
 

Site Year KSI over  
DNI % 
Perez  

KSI over % 
DNI %  
BRL 

Payerne (CH) 2008 278% 106% 

Camborne (UK) 2005 400% 62% 

Billings (IL, USA) 2008 225% 151% 

Carpentras (FR) 2009 46% 308% 

 
 
 

 

Fig. 7.7.2:  Distribution (left) and cumulative distribution (right) of hourly beam irradiance for Payerne, 
CH. 

 

Fig. 7.7.3:  Distribution (left) and cumulative distribution (right) of hourly beam irradiance for 
Carpentras, FR. 
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7.7.2 Calculation of global and diffuse radiation on 
inclined surfaces 

In Meteonorm Version 6.0 four models for calculation of radiation on inclined planes are included. The 
Perez model (Perez et al. 1986) is still the default model. All models enable global and diffuse 
radiation to be calculated on an inclined surface using the two input values of global horizontal and 
diffuse horizontal radiation. In version 6.0 the following three hourly models and a new model based 
on minute time resolution have been added: 

¶ Hayôs model (1979) 

¶ Skartveit and Olset model (1986) 

¶ Gueymardôs model (1987) 

¶ minute time resolution model (Skartveit and Olseth, 1986) 

Perez model 

In this handbook only the default model of Perez is described in some details. For the three other 
models we refer to publications. By means of Eqn. 7.7.2, the diffuse radiation on an inclined surface is 
calculated from the two components diffuse celestial irradiance (Bk and Dk

c) and diffuse reflected 
irradiance (Gk

r). 

r

k

c

kkk DDBG ++=  (7.7.2) 

The diffuse reflected irradiance (Dk
r) is calculated with the following model: 
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where b is the surface inclination, rR the isotropic reflected view factor and r the surface albedo (see 
Chapter 7.7.2.1).  

The diffuse celestial radiation on an hourly basis may not be assumed to be isotropic. It is therefore 
further divided into the components circumsolar, isotropic and horizontal ribbon. The model governing 
the equation for diffuse celestial irradiance is (Eqn. 7.7.4): 
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 (7.7.4) 

where F1 and F2 are coefficients expressing the degree of circumsolar anisotropy and anisotropy at 
the horizon/zenith respectively, and a and b are as given below 

( ) ( )a Z=max  and  b= max0 0087,cos . ,cosQ  (7.7.5) 

where Q is the incidence angle of the sun on the inclined surface and rD the isotropic diffuse view 
factor. rD and rR are related by the expression 

r  =  1 -  rR D  (7.7.6) 

The three components are calculated separately and then summed to provide the diffuse celestial 
irradiance. A detailed description of the Perez model for different values of F1 and F2 may be found in 
Perez et al. (1986, 1987 and 1990a). 
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7.7.2.1 Albedo and snow coverage 

With version 7 a new model based on snow coverage is introduced. Snow cover is simulated based 
on temperature, global radiation, wind speed and precipitation. For the snow melt potential we use 
(7.7.7): 
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 (7.7.7) 

 
The snow density is kept constant. Like this the snow depth is modeled only very roughly. 
If measured temperature, precipitation and dew point temperature is used, the generation shows 
accurate values: 
 
 
As snow cover varies very much from one stochastic generation to another, the software simulates 5 
different years and takes the year with the snow coverage, which lies nearest to the mean value. 
The uncertainty of the days with snow is 22 days / year (tested at approx. 280 sites in Europe). For 
regions with typically less than 50 days with snow, the uncertainty lies at 13 days. 
 
Albedo is calculated depending on the snow depth. At 0 cm albedo is 0.2 and at 5 cm 0.5. In-between 
the albedo is calculated linearly. 
The lowering of the albedo with duration since last snow fall is modeled with the following equation 

( )1.156 - hss 0.049-exp0.083- = Ö+rrc  (7.7.8) 

hss = hours since last snow fall 
 
During snowfall the albedo is set to 0.73. After 3 days the albedo goes down to 0.42. 
 
If the albedo canôt be calculated with snow coverage (too low or missing precipitation values) albedo is 
calculated with the model (used in version 6) that gives albedo as a function of temperature.  

 

7.7.2.2 Validation of the slope irradiance model 

The generated diffuse radiation on inclined planes is calculated in two stages. The two Perez models 
were first tested alone with measured hourly values of global radiation as inputs. Secondly they were 
tested within the combined model, using generated hourly radiation values. 

Validation with measured hourly radiation was carried out for 2 sites in Switzerland for inclinations of 
33ï45° with a more or less South orientation (typical for solar energy applications) and also for a West 
facing facade in Bavaria (typical exposure for overheating studies). 

Validation with generated hourly radiation was made at 18 sites throughout the world. 
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Tests using measured hourly values: 

Inclined surfaces: 

The tests were carried out for 2 sites in Switzerland with data of 1993 (Berne-Marzili, 46.95°N, 7.45°E, 
520 m, inclination 35°, azimuth: 37°E; Locarno-Magadino: 46.18°N, 8.85°E, 197 m, inclination: 35°S, 
azimuth: 15°W). The average mbe error in the hourly values was 5 W/m2 (over all hours) (generated 
values slightly too high) and the rmse standard deviation 33 W/m2 (Gh > 0). For monthly average 
values, the mbe was 3 W/m2 (5%) and the rmse 5 W/m2.  

Facades: 

The test was carried out at Holzkirchen (Bavaria; 11.71°E, 47.87°N, 680 m) for a West facade. The 
average mbe error in the hourly values was 3 W/m2 (over all hours) (generated values slightly too 
high) and the rmse standard deviation 51 W/m2 (Gh > 0). For monthly average values, the mbe was 3 
W/m2 (0%) and the rmse 8 W/m2 (13%). 

Tests using generated hourly values: 

The monthly and yearly means are examined. The tests were carried out for 14 sites in many different 
climate zones and different inclinations (18° to 90°) (PVPS 2007) (Tab. 7.7.3). Only measurements 
with pyranometers (for horizontal as well as inclined planes) have been used. 

Tab. 7.7.3:  12 Test sites for global radiation on inclined plane models 
 

Site Country Source Altitude Latitude Longitude Azimuth Inclination 

   [m] [°] [°] [°] [°] 

Locarno-
Magadino 

Switzerland PVPS 222 46.18 8.86 195 45 

Akamatsu Japan PVPS 200 35.05 135.48 158 27 

Gelsenkirchen Germany PVPS 35 51.50 6.39 180 30 

Mexicali Mexico PVPS 3 32.66 -115.46 180 18 

Cloppenburg Germany PVPS 40 52.85 8.03 180 32 

Varennes Canada PVPS 29 45.52 -73.22 180 45 

Burgdorf Switzerland HTI 530 47.02 7.62 170 28 

Huvudsta Sweden PVPS 50 59.20 18.00 162 80 

Bern-Marzili Switzerland PVPS 514 46.9446 7.4423 143 35 

Mt. Soleil Switzerland PVPS 1270 47.164 7.000 153 50 

Faro Portugal PVPS 20 37.00 -7.90 170 25 

Holzkirchen Germany HOKI 680 47.87 11.71 270 90 

 
The 4 different models did show similar results (Tab. 7.7.4). Due to uncertainties based on the 
measurements the differences are too small to rank the models seriously. Nevertheless for monthly 
values Perez model showed the best results, followed by Gueymardôs, Hayôs and Skartveitôs model. 
The average mbe error of Perezô model for yearly values is 1 W/m2 and the rmse standard deviation 7 
W/m2 (4.6%). 

Tab. 7.7.4: Accuracy of monthly and yearly values of radiation on tilted planes 
 

 Perez Hay Gueymard Skartveit 

Monthly mbe [W/m2] 2.4 -1.6 -0.3 -2.8 

Monthly rmse [W/m2] 9.8 10.5 10.1 11.5 

Yearly mbe [W/m2] 1.3 -4.0 -2.4 -5.8 

Yearly rmse [W/m2] 7.0 8.1 7.5 9.5 

Yearly rmse [%] 4.6 5.3 4.9 6.2 

Yearly rmse 0-50° [W/m2] 4.6 5.3 4.9 6.2 

Yearly rmse > 50° [W/m2] 5.2 6.1 5.5 7.8 

 

At some sites the differences have a distinct yearly pattern with an overestimation in winter (e.g. 
Switzerland). In other regions these effects are not visible. 
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For inclination above 50° the calculation is partly worse. For facades Perezô and Gueymardôs models 
are the best the best, followed by Hayôs and Skartveitôs model. 

7.7.3 Modification of radiation due to horizon 

The aim of the modification method described here is to calculate the radiation at sites with raised 
(distant) horizons. A number of assumptions which were used in the raised (local) skyline model are 
not valid in this case. In the following chapter, the modification procedure for the different radiation 
components is described. 

7.7.3.1 Modification of direct radiation by skyline profile 

It is clear that direct radiation is affected by a raised (i.e. non-horizontal) horizon in such a way that 
when the sun is occluded by the horizon, no direct radiation can impinge on the inclined surface. In 
other words, the surface in question receives less direct radiation than it would with a horizontal 
skyline. In calculating hourly values, a check has therefore to be made whether the sun is above or 
below the skyline. If occluded by the skyline, the direct radiation on the inclined surface is zero. 

The hourly direct radiation on an inclined surface (Bk) is set to zero under the following conditions: 

¶ When the sun has not yet risen or has already set (hs<0). 

¶ When the sun is behind the surface (cos(Q)<0 ; where Q = incident angle of radiation on inclined 
surface; Eqn. 7.7.5). 

¶ When the sun is behind the skyline (hs < skyline altitude). Thus a check has to made each hour 
based on azimuth and solar altitude to establish whether the skyline altitude is greater or smaller 
than the solar altitude. 

7.7.3.2 Modification of diffuse radiation by skyline profile 

The diffuse radiation components are processed as follows: 

¶ Circumsolar component: this is treated in the same way as direct radiation. 

¶ The horizontal ribbon: this part of the diffuse radiation remains unchanged, i.e. it retains its original 
value independently of skyline profile. This is assumed for the reason that the sky immediately 
above the horizon is often brighter than the rest of the sky. This applies not only in regions with 
practically level horizons but also in mountainous regions. In mountainous regions in summer, this 
is often caused by the bright convective clouds that tend to form above ridges and peaks. 

¶ Diffuse isotropic and reflected irradiance (Dk
r) are calculated as follows:  

If the skyline is not horizontal, a larger proportion of ground and smaller proportion of sky is visible 
to the surface. This implies that the view factors (rD, rR) must be modified when a raised skyline is 
present. The skyline profile is normally given as a closed polygon whose points are specified in 
terms of azimuth and altitude. The proportion of the sky which, despite the existence of a skyline 
profile is still seen by the inclined surface, may be calculated by numerical integration. From the 
isotropic diffuse view factor calculated in this way, the isotropic reflected view factor may be 
calculated as given in Eqn. 7.7.5. The diffuse radiation with skyline effect can be calculated using 
the new values of rR and rD in Eqn. 7.7.2 or 7.7.5. In Eqn. 7.7.2, the global horizontal radiation (Gh) 
must also be changed. This is done by calculating horizontal radiation with raised horizon (Gh

hor) 
for a horizontal surface.   
In case of far horizons (typically from mountains) the horizontal ribbon is kept (Eqn. 7.7.9): 
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 (7.7.9) 

 

7.7.4 Conclusions 

The validation procedure for the complete model shows that coupling the various models to provide 
hourly values produces satisfactory results. Thus the basic procedure for generating hourly values of 
meteorological data at any desired location has proved to be a valid approach. On average, the model 
overestimates yearly average global radiation values by 0 W/m2 by the default model. The rmse 
comes to 6 W/m2 (4%). 

The distributions of daily global irradiance values are similar to the measured at all test sites. For 
hourly values the discrepancies are bigger and for beam irradiance the distributions donôt pass the null 
hypothesis of KS test. Nevertheless the distributions are similar at most sites for the biggest part of 
possible values (especially for higher values above 500 W/m2). 

Although most of the models were checked independently, not all of them could be validated in depth. 
For example, those for removing and superimposing raised horizons could not be checked owing to a 
lack of data. 
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7.8 Minute time resolution radiation 
data 

7.8.1 Minute to minute generation model 

In version 6 the first minute to minute generation was introduced. This model was based on the TAG 
model of Aguiar and Collares-Pereira (1992), which is made for the generation of hourly values and is 
used also in Meteonorm. In version 7 an additional model based on Skartveit and Olseth (1991) was 
added. For version 7.2 two new models have been added: the model of Hofmann et al. (2014) and a 
new model based on time series (Remund, 2017). Validations showed that the TAG model has 
relative large deviations. This was the reason to exclude this model in the new version. 

7.8.1.1 Time series minute model 

The following sites (BSRN stations) have been used to adapt the new time series model for minute 
values (Tab. 7.8.1). 

Tab. 7.8.1:  Sites used to adapt the model (all BSRN sites) 

Name Country Period 

Alice Springs AUS 2010-2011 

Bermuda BER 2008-2009 

Billings USA 2008-2009 

Cabauw NLD 2010-2011 

Camborne GBR 2004-2005 

Carpentras FRA 2009-2010 

Cesapeak Light USA 2010-2011 

Florianopolis BRA 1997-1998 

Lauder NZL 2010-2011 

Lindenberg GER 2004-2005 

Momote PNG 2010-2011 

Payerne CHE 2008-2009 

Regina CAN 2010-2011 

Sede Boker ISR 2010-2011 

Tamanrasset ALG 2010-2011 

Tateno JPN 2010-2011 

Toravere EST 2010-2011 

 

One minute global radiation time series of two years of each station have been normalized by the 
clearsky radiation and saved divided into 3 wind speed classes, 10 cloud classes and 5 sunshine 
classes. 20 different time series have been saved. The time series are generated on the basis of 
hourly values by choosing stochastically one of the 20 stored curves depending on the weather 
conditions.  

 

7.8.1.2 Hofmann minute model 

The two-step algorithm (Hofmann et al., 2014) is capable of synthesizing one-minute global irradiance 
time series based on hourly averaged datasets. The algorithms initialized by deriving characteristic 
transition probability matrices (TPM) for different weather conditions (cloudless, broken clouds and 
overcast) from a large number of high resolution measurements. Once initialized, the algorithms 
location-independent and capable of synthesizing one-minute values based on hourly averaged global 
irradiance of any desired location. The one-minute time series are derived by discrete-time Markov 
chains based on a TPM that matches the weather condition of the input dataset. 
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7.8.1.3 Skartveit and Olseth minute model 

This model was made for 1 ï 10 minute data generation and therefore could be used almost without 
any change. Only the time series generation had been changed. Instead of permuting the minute 
values until they correspond to the given autocorrelation value, the time series is modeled with a 
simple autoregressive model (AR1) and then mapped to the calculated distribution. 

 

7.8.1.4 Validation 

In Tables 7.8.3 ï 4 measured and generated values (f, s, KSI over) are compared. The distribution 
has been tested at 5 BSRN sites with Kolmogorov-Smirnov (KSI) test: 

Tab. 7.8.3:  Comparison between measured and generated clearness index (minute time 
resolution).  
 

Model measured S&O Hofmann Time series 

Site s f s f s f s f 

Payerne 0.232 0.797 0.137 0.665 0.193 0.823 0.142 0.826 

Camborne 0.234 0.771 0.136 0.660 0.210 0.826 0.144 0.837 

Billings 0.262 0.798 0.138 0.656 0.200 0.815 0.147 0.820 

Carpentras 0.244 0.793 0.142 0.635 0.210 0.808 0.140 0.821 

Mean 0.243 0.790 0.138 
(-43%) 

0.654 
(-17%) 

0.203 
(-16%) 

0.818 
(+4%) 

0.143 
(-41%) 

0.826 
(+5%) 

 

Tab. 7.8.4: Kolmogorov-Smirnov test (KSI over %) for one minute clear sky values. 
 

Site Year KSI over  
DNI % 
S&O  

KSI over % 
DNI %  
Hofmann 

KSI over  
DNI % 
Time 
series  

Payerne 2008 745 573 762 

Camborne 2005 1350 543 1140 

Billings 2008 1295 1339 1233 

Carpentras 2009 1764 1152 1656 

Mean  1289 902 1198 

 

Skartveit-Olseth minute model 

The standard deviation is clearly underestimated (by 43%) and first autocorrelation value (phi) is 
underestimated (-17%). KSI values are given slightly worse by this model compared to the two other. 

Hofmann 

On average the standard deviation is underestimated by 16% and phi is overestimated by 4%. That 
means, that variation is too low and the connection from minute to minute is slightly too high. Sigma 
isnôt overestimated at every place, whereas phi is underestimated everywhere. This model shows the 
lowest deviations. 

Time series 

On average the standard deviation is clearly underestimated by 41% and phi is overestimated by 5%.  

The distributions of generated and measured diffuse radiation are similar, but do differ statistically. In. 
Figure 7.8.1 ï 2 the distributions and cumulative distributions at Billings and Payerne are shown.  
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Fig. 7.8.1:  Distribution of minute clearness index Left: Billings, right: Payerne. 

 

Fig. 7.8.2:  Cumulative distribution of minute clearness index Left: Billings, right: Payerne. 

The two peaks of the distribution are given with both models. However the peaks are partly 
underestimated ï especially the high peak. All generation model show also a distinct peak at 0.1 (the 
reason for this couldn't be evaluated). 

Fig. 7.8.3 shows a time series of minute global and diffuse radiation at Billings and Payerne. All 3 
types of days are shown realistic (low radiation and high radiation levels with low variations as well as 
mid radiation level with high variations). Distributions are given better for the two more cloudy sites. 


