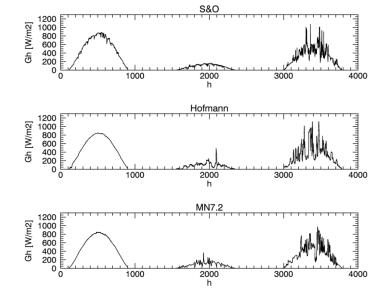


Generation of one minute data

New models and comparison

24.10.2016


Jan Remund

Generation of one minute data

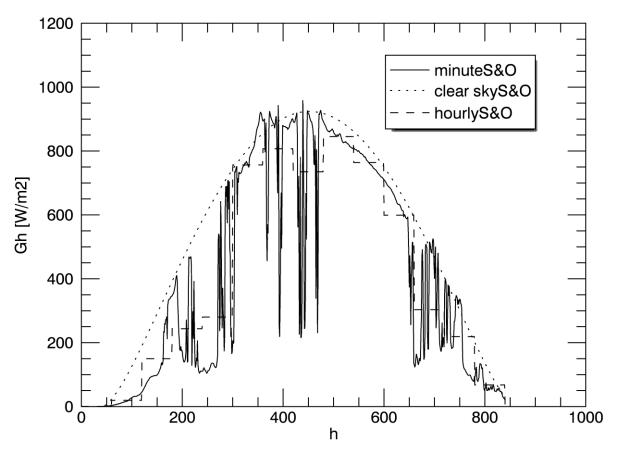
24.10.2016

Contents

- One minute data
- Existing models
- New models
- Validation

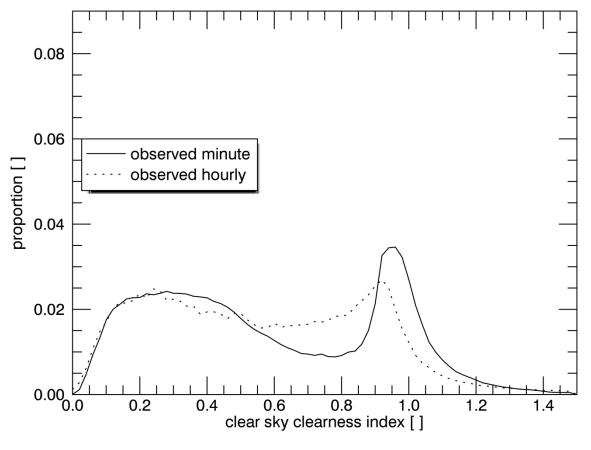
«All models are wrong - some are useful»

Scope


- One minute data gets important for accurate modelling of:
 - bigger PV plants
 - smaller PV plants including
 - storage (batteries),
 - self consumption or
 - Peak shaving
- One minute data has a different distribution as one hour data
- Measured data is only scarcely available (no satellite data)
 → models are needed
- In Meteonorm 6.x and 7.x:
 - TAG and Skartveit&Olseth models included
 - Not «good enough»
 - Two new models tested: «Hofmann» and «MN7.2»

One minute data

- Variations much higher than for hourly averages
- Over-shootings often



One minute Gh values for Payerne (BSRN), 15.04.2008

One minute data

- Distributions different
- Shifted towards lower and higher values (cloud / no cloud)

Distribution of one minute and hourly Gh values for Camborne (BSRN), 2004-2005

Existing (examined) models

Model	Source	Used in	Type of model	
Skartveit & Olseth	Skartveit, A. and J.A. Olseth	Meteonorm	Auto-	
(S&O)	(1992): The probability density	7.0 -7.1	correlation (1.	
	and autocorrelation of short-term		order)	
	global and beam irradiance.			
	Solar Energy Volume 49, No. 6,			
	pp 477-487.			
Aguiar & Collares-Pereira	Aguiar, R. and M. Collares-	Meteonorm	Autoregressive	
(TAG)	Pereira (1992): TAG: A time-	6.1 -7.1	model (AR1)	
	dependent auto-regressive,			
	Gaussian model. Solar Energy,			
	Vol. 49, No.3, pp. 167-174.			
Hofmann	Hofmann, M., Riechelmann, S.,	PVSol	Markov chain	
	Crisosto, C., Mubarak, R., &	(Valentin)	model	
	Seckmeyer, G. (2014). Improved			
	Synthesis of Global Irradiance			
	with One-Minute Resolution for			
	PV System Simulations.			
	International Journal of			
	Photoenergy, 2014.			

6

Hofman model

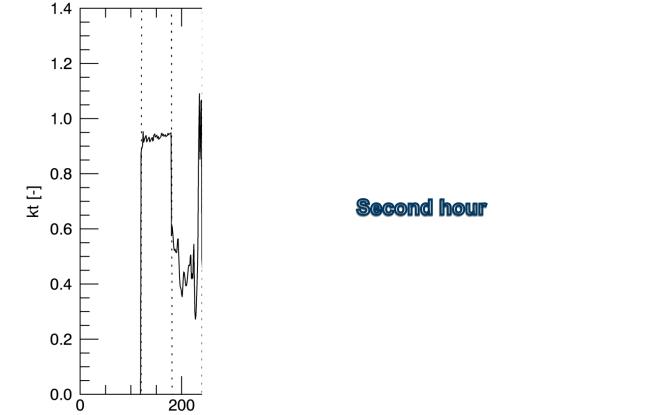
- Included in PVSol
- Based on Markov chain model (similar to Aguiar&Collares-Pereira, 1988)S
 - Conditional probabilities of previous hour/minute

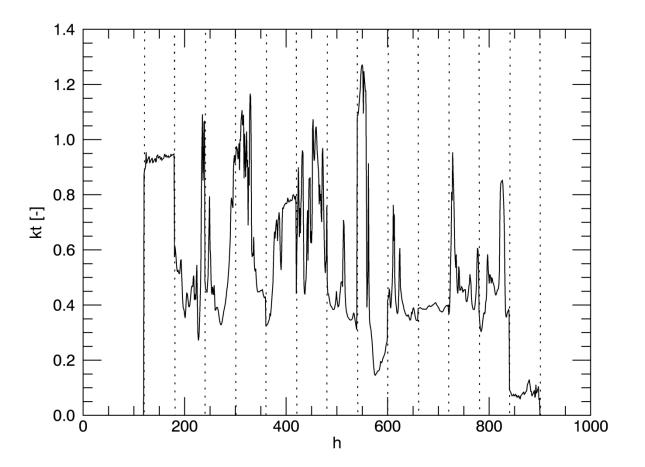
	k _{t,I}	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	0,1
k _{t,i+1} o		0	0	0	0	0	0	0	0	0	0	0
0,01		0	0,8293	0,1707	0	0	0	0	0	0	0	0
0,02		0	0,1034	0,7241	0,1724	0	0	0	0	0	0	0
0,03		0	0	0,0941	0,7529	0,1412	0	0,0118	0	0	0	0
0,04		0	0	0,0101	0,1111	0,7475	0,1111	0,0202	0	0	0	0
0,05		0	0	0	0	0,0592	0,8092	0,1118	0,0132	0,0066	0	0
0,06		0	0	0	0	0,0171	0,1453	0,6496	0,1453	0,0256	0,0085	0,0085
0,07		0	0	0	0	0	0,0115	0,2184	0,4943	0,2529	0,0230	0
0,08		0	0	0	0	0,0148	0	0,0370	0,1407	0,6074	0,1481	0,0296
0,09		0	0	0	0	0	0	0	0,0550	0,1835	0,4954	0,2018
0,1		0	0	0	0	0	0	0	0	0,0233	0,2016	0,5271

- Based on 15 BSRN locations worldwide, 2 years of one minute data
- Sites = ['CAR', 'PAY', 'CAM', 'CAB', 'LIN', 'TAT', 'LAU', 'MAN', 'REG', 'CLH', 'ASP', 'BER', 'BIL', 'SBO', 'TAM']

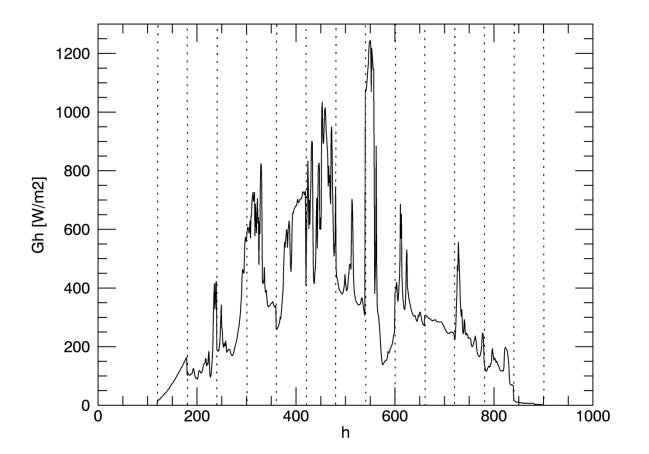

8

- Look-up database of measured timeseries in one minute time resolution in blocks of one hour
 - Model is based on 20 measured timeseries per weather class
 - Classes depend on:
 - Clearsky clearness index (10 classes at 0.1 width)
 - Elevation of sun (5 classes at 18° width)
 - Wind speed (3 classes: $< 2 \text{ m/s}, < 6 \text{ m/s}, \ge 6 \text{ m/s}$)
 - Totally: 150 classes
 - One fits all (\rightarrow one table, no separation by climate zone)
 - 84% of the classes include measurements
 - Measured timeseries (1 of 20) is chosen stochastically
 - Extra criterion: if timeseries is stable, gap between hours is limited
 - Generation model is computationally very quick


- 60-minute sequences are added to each other •
- Values in clearsky clearness index


Billings

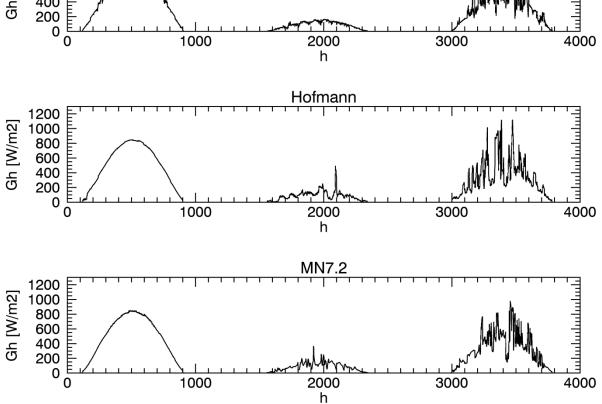
- 60-minute sequences are added to each other
- Values in clearsky clearness index


- 60-minute sequences are added to each other
- Values in clearsky clearness index

Billings

- 60-minute sequences are added to each other
- Same day in global radiation (Gh)

Billings

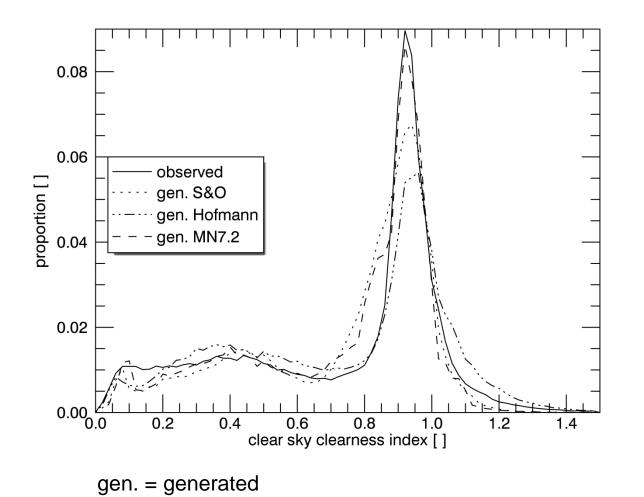


- Comparison of standard deviation (KSI test)
- Ranks

- · Comparison of four models with BSRN data at 4 locations
 - Camborne, Carpentras, Payerne, Billings
- Tests:
 - Visual comparison
 - Distribution tests (KSI over)
 - Comparison of autocorrelation (KSI test)

1200 1000 800 400 900 900 900

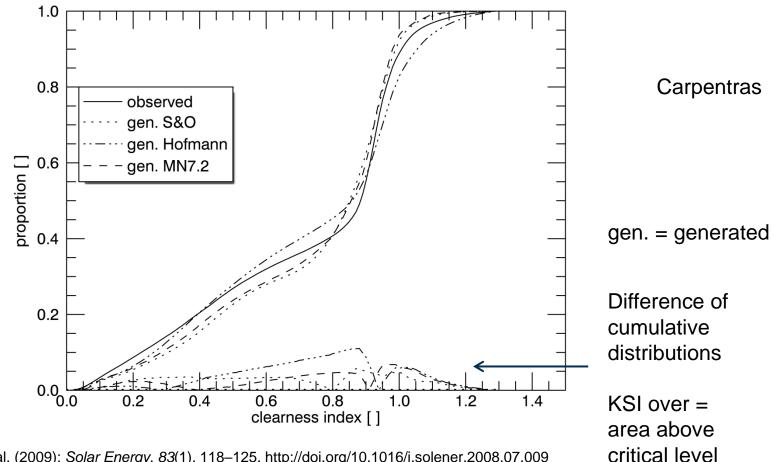
S&O

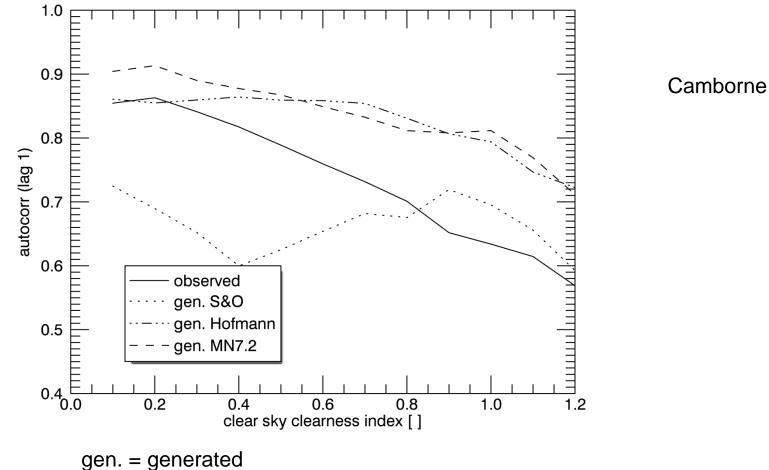

Visual comparison: generated timeseries

Validation

Payerne

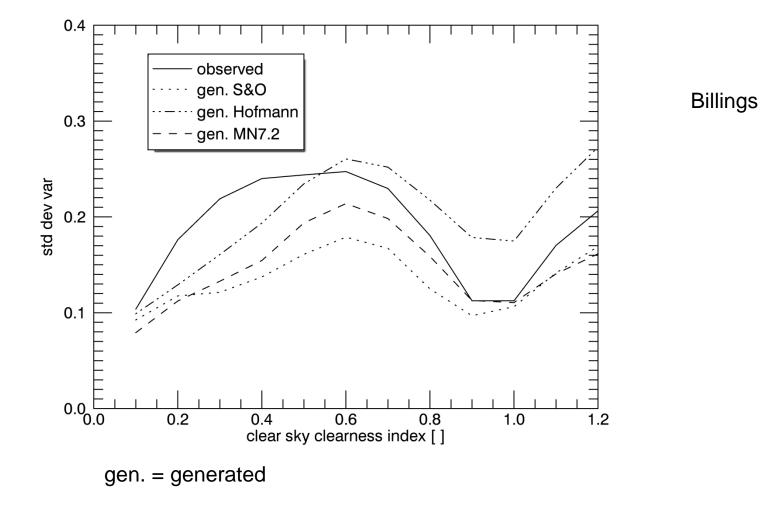
• Distribution




(99%)

Distribution test (KSI over)* •

*Espinar, B. et al. (2009): Solar Energy, 83(1), 118-125. http://doi.org/10.1016/j.solener.2008.07.009


 Autocorrelation (1 minute time lag) in dependence on clearsky clearness index

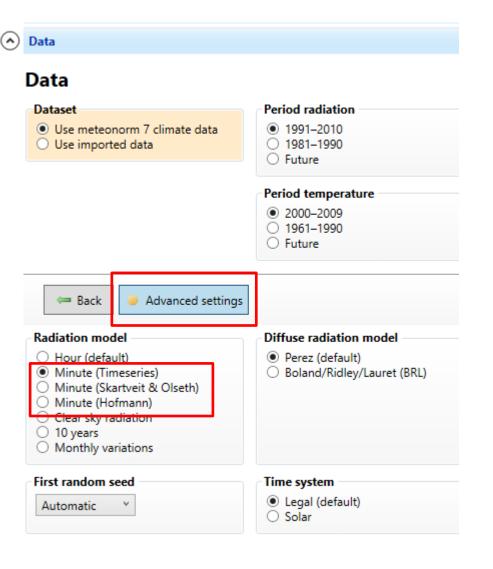
• Standard deviation in dependence on clearsky clearness index

Validation results

• Averages of KSI over% value

	S&O	TAG	Hofmann	MN7.2
Distribution	1289	1417	1356	1249
Autocorrelation	21.2	14.6	15.3	14.2
Standard dev.	87.3	118.2	2.94	10.5
Avg. Weighted	1.29	1.37	0.67	0.67
Rank	3	4	2	1

- S&O: 2nd for distribution, bad at autocorrelation and standard deviation
- TAG: 2nd for autocorrelation, bad at standard deviation
- Hofmann: First at standard deviation, third at autocorrelation
- MN7.2: First at autocorrelation and distribution


Conclusions

- New models show much better results
 - However still "models" (which approximate the reality)
- TAG will be excluded in version Meteonorm 7.2 (www.meteonorm.com)
- S&O will be kept together with
 - MN7.2 (timeseries based model)
 - Hofmann (Valentin/PVSol-model)

Conclusions

- New version 7.2 foreseen for mid January 2017
 - Can be used to enhance resolution of satellite timeseries or TMY's
 - Available also in plugins/dll
 - Available in web service (15 minute data)
- Additional major update:
 - New turbidity climatology

Generation of one minute data

Questions & suggestions?

www.meteotest.ch